Efficient Heuristics for Simulating Population Overflow in Feed-forward Networks
نویسندگان
چکیده
In this paper we propose a state-dependent importance sampling heuristic to estimate the probability of population overflow in feed-forward networks. This heuristic attempts to approximate the “optimal” state-dependent change of measure without the need for difficult analysis or costly optimization involved in other recently proposed adaptive importance sampling algorithms. Preliminary simulation experiments with a 4-node feed-forward network yield asymptotically efficient estimates, with relative error increasing at most linearly in the overflow level, where state-independent importance sampling is demonstrably ineffective.
منابع مشابه
Efficient heuristics for simulating rare events in queuing networks
Resumé / Ðåçþìå In this thesis we propose state-dependent importance sampling heuristics to estimate the probability of population overflow in queuing networks. These heuristics capture state-dependence along the boundaries (when one or more queues are almost empty) which is crucial for the asymptotic efficiency of the change of measure. The approach does not require difficult (and often intrac...
متن کاملExtension of heuristics for simulating population overflow in Jackson tandem queuing networks to non-Markovian tandem queuing networks
In this paper we extend previously proposed state-dependent importance sampling heuristics for simulation of population overflow in Markovian tandem queuing networks to nonMarkovian tandem networks, and experimentally demonstrate the asymptotic efficiency of the resulting heuristics.
متن کاملSTRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کاملModeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملCellular automata simulation of topological effects on the dynamics of feed-forward motifs
BACKGROUND Feed-forward motifs are important functional modules in biological and other complex networks. The functionality of feed-forward motifs and other network motifs is largely dictated by the connectivity of the individual network components. While studies on the dynamics of motifs and networks are usually devoted to the temporal or spatial description of processes, this study focuses on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006